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Abstract  

A semiclassical model in which elementary particles are represented as systems of charged 
shells with associated quark-like quantum numbers is presented. Specifically the baryons 
are considered. Formulas are obtained which express baryon masses and magnetic 
moments in terms of model parameters which relate baryon and quark properties. 
Basically, the mass and moment formulas are expressions for mass ratios and magnetic 
moment ratios. Simple identifications for the model parameters lead to a prediction for 
the proton-electron mass ratio and to fairly accurate predictions for the baryon magnetic 
moments in units of the proton moment. 

The mass and moment formulas, which relate corresponding properties of different 
particles, are generalised such as to express relationships between the members of a 
sequence of particles, where such a sequence is conceived of as containing only one 
(normal) baryon. A specific sequence, containing the proton and electron, is proposed; 
various physical properties of the particles in the sequence are determined. In particular, 
a second prediction for the proton--electron mass ratio is obtained; the two predictions 
differ numerically but both agree with the measured value of the mass ratio within 
experimental error. 

1. Introduction 

This paper presents the latest results of  a continuing investigation whose 
objective is to fred a simple semiclassical model of  elementary particles capable 
of  providing accurate estimates of  particle properties (masses and magnetic 
moments). The present model represents particles as systems of  charged shells 
as was done in some previously considered models (Delaney, t973). Here a 
new parameterisation of  particle properties is formulated. Within this formalism 
fairly accurate estimates of  some particle properties are obtained in a rather 
simple way. 

As in the previously considered models, the particle subshells may be o f  
different types, a shell type being defined by a set of  quantum numbers. 
Three shell-types, denoted by the symbols p, n, and X are considered; their 
associated quantum numbers are displayed in Table 1. Since the shell-type 
quantum numbers correspond to those of  the p,  n, and X quarks, a shetl o f  
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TABLE 1. Shell types p, n and k and their associated quantum numbers. The quantum 
numbers are identical with the charge, hypercharge, isospin, strangeness and baryon 
number quantum numbers originally associated with p, n, and h quarks 

q Y I I S B 

p 2/3 1/3 1/2 1/2 0 1/3 
n --1/3 1/3 1/2 - 1 / 2  0 1/3 
X - 1 / 3  - 2 / 3  0 0 - 1  1/3 

type p,  n, or X wilt be considered synonymous with a p,  n, or X quark. In 
general, a particle will be identified in terms of  its quantum numbers, which 
are the sums of  the quantum numbers of  its constituent shells or quarks. 

The formal representation of  the models to be considered is based on the 
classical relationt 

W = f d3r(E 2 +B2)/87r (1 .i) 

expressing the rest frame electromagnetic energy, W, associated with a 
particle in terms of  the particle's electric, E, and magnetic, B, fields. The 
field E is the sum of  the electric fields E i due to the shell charges qi e (e is 
the charge of  the proton);  thus, denoting the shell radii by Ri ,  

E = qier/r 3 r > R i (1.2a) 

E = 0  r < R  i (1.2b) 

The field B is the sum of the magnetic fields Bi arising from magnetic dipole 
moments,/ , / ,  associated with the shells or quarks. The fields Bi are assumed to 
have the form which would result if the moments were due to rotation of  
charged shells; thus 

B i = 3(b~ i . r)/r s - ~ i / r  3 r > R  i (1.3a) 

B i = 2~i /Ri  3 r < R  i (1.3b) 

In this paper only the baryons will be considered explicitly. As .usual, 
these particles will be built from three quarks; in the context of  the present 
model they will correspond to systems of  three shells. 

2. The Model 

The quark magnetic moments are defined in terms of  their g-factors, gi, 
masses, rni, and angular momenta,  Ji, as 

~i  = e(gi /2mi)qiJ i  (2.1) 

t Gaussian units, and the natural units obtained by settingh = c = 1, are used through- 
out this paper. 
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Resulting relationships will be simplified by assuming that two of the quark 
shells have various common properties; specifically, either 

R 2 =R 3, 

or  

R 2 = R  I, 

where, by convention, 

g 2  = g3, m 2 = m 3 (2.2a) 

g2 = g~, m 2  = m 1 (2.2b) 

R 1 ~<R a (2.3) 

In either of the cases (2.2a) or (2.2b), the result of evaluating (1.t), using 
(1.2), (1.3), (2.1) and (2.3), may be expressed in the form 

2/e2 = [Qoo + 2 ( g l / 2 m l R 1 ) 2 K 2 o o ] / W R  1 + [Qo + 2 ( g 3 / 2 m 3 R 3 ) 2 K o 2 ] / W R 3  
(2.4) 

where, defining 

in the case (2.2a), 

where 

= ( g l / g 3 )  m3/m 1 (2 .5 )  

Qoo = q 12 (2.6a) 

Qo = (ql +q2 +q3) 2 - q l  2 (2.6b) 

K~o = (q 1J1)2 (2.6c) 

Ko 2 = K z - e2K~o  (2.6d) 

K=q3J3 +q2J2+eq l J l  

while, in the case (2.2b) 

Ooo = (ql + q2) 2 

Qo =(qt  +q2 + q 3 )  2 - ( q t  +q2) 2 

K~o = (qlJ1 + q2J2) z 

Ko 2 = K 2 _ e2K200 

where 

(2.6e) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

K = q3J3 + e(q2J2 + q l J 1 )  (2.7e) 

The expression (2.4) may be formally transformed into an expression 
involving the mass, M, of a particle (quark system) by the following procedure. 
Quantities bi, relating the quark-shell masses to their radii, are defined by 

m i R  i = b i (2.8) 
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Similarly, a quantity d, relating the radius, R, of a particle to its electro- 
magnetic self-energy, is defined by 

since obviously 

WR = d (2.9a) 

R 3 = R (2.9b) 

WR 3 = d (2.9c) 

m a R  = b a (2.9d) 

Using (2.8) and (2.9) with (2.4) and defining 

NI = Qoo + 2(gl/2bl)2K~o (2.10a) 

N 3  = Qo + 2(g3 /2b3)2Ko 2 (2.10b) 

the expression 

m l / m  3 = (2d/e  2 - N 3 ) b , / ( b 3 N 1 )  (2.11) 

is obtained for the quark mass ratio. Defining a parameter, ~, relating the 
mass,M, of a particle to the mass ratio of its constituent quarks by 

M / m  = otrn 1/rn3 (2.12) 

where m is the electron mass (the significance of this relation will be investi- 
gated in the following section), and using (2.11), 

M / m  = (2d/e  2 - N a ) b  1 a / (b  3N 1 ) (2.13 ) 

Assuming that the quark masses, mi,  are the same for all particles (a major 
specific difference between this and the previous models), (2.12) may be used 
to relate the fixed quark mass ratio to the properties of one baryon. Choosing 
this baryon to be the proton and establishing the convention of distinguishing 
properties associated with the proton (including those of its constituent quarks) 
by a '(P)', 

m t  /rn 3 = ( I /oOM/m = ( I /a(P) )M(P) /m (2.t4) 

Using (2.14) with (2.11), 

M ( P ) / m  = ( 2d/e  2 - N3  )b l  a (P) / (N  1 b3) (2.15) 

Assuming that the magnetic moment of a particle, ~t, is the sum of the 
moments of its constituent quarks, 

Is. = e ( g 3 / 2 m a ) K  (2.16) 

where K is given by either (2.6e) or (2.7e). Assuming again that rna is the 
same for all baryons, the moments of these particles may be expressed in 
terms of proton properties as 

la/la(P) = g s K / ( g s  (P)K(P))  (2.17) 



A NEW SEMICLASSICAL ELEMENTARY PARTICLE MODEL 2 4 3  

Since, with (2.14), the quantity e defined by (2.5) wilt be very small (the 
order of m/M(P)), the quantities K in (2.17) can be replaced to great accuracy 
by the corresponding values o fK 0 (defined by (2.6d) or (2.7d)); thus 

U/Is(P) = g3Ko/(g3 (P)Ko (P)) (2.18) 

In order to obtain precise predictions from (2.18) and (2.15) it is necessary 
to identify constraints whereby, for the various baryons, the values of the 
parameters appearing in these expressions may be determined or at least 
restricted to a limited set of possible values. 

The set of quarks corresponding to each baryon is uniquely determined 
from the condition that its various quantum numbers must equal the sums of 
the corresponding quantum numbers of its constituent quarks. This condition 
fixes the possible shell charge assignments for each baryon, there remaining, 
however, the choice of which quarks correspond to which shells, that is, the 
identification of the type (p, n, or X) of each shell. 

The quark angular momenta and their couplings are restricted by the con- 
dition that the sum of the quark angular momenta must equal the baryon 
spin, S. This condition implies that 

s = 3 /4  

where the J]k = (Ji + Jk) 2 are squares of the 'intermediate angular momenta'. 
The values of the J/2 k will be used to specify the quark angular momentum 
coupling; these quantities may be conveniently employed for the evaluation 
of the expressions (2.7c), (2.7d) and (2.6d) which (with (2.6c)) determine 
the values of the quantities Ko and K0o in (2.10). 

The quark angular momenta will also be limited by allowing only the value 

]i = 1/2 (2.19a) 

for their total angular momentum quantum number, in which case 

Y~ =Ji(]i + 1) = 3/4 (2.19b) 

and the (J~2, J~3, J~3) can only assume values corresponding to some permu- 
tation of either (3/2, 3/2, 0) or (2, 1/2, 1/2). 

The values of the d and b i for the various baryons are not determined by 
any obvious a priori physical considerations. However the form of (2.15) 
suggests some simple assumptions whereby the choice of these quantities 
(and the angular momentum couplings) may be limited. 

Imposing the condition that (2.15) be linear inM(P)/m (that it yield a 
unique value for this ratio), then, given (2.19) and the possible quark charges, 
the quark angular momentum couplings can only correspond: in the case 
(2.2a) to 

(J22, J23, J~a) = (3/2, 3/2, O) (2.20a) 

and in the case (2.2b) to 

(J~2, J~3, S~3) = (0, 3/2, 3/2) (2.20b) 
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since, in this way, the dependence of the quantities Ko in (2.t0b) on the ratio 
m/M(P) (through (2.6e), (2.6d), (2.7e), (2.7d), (2.5)) and (2.12)is eliminated. 
With (2.19) and (2.20), in the case (2.2a), 

(Ko/S) 2 = (q2 - q3) 2 (2.21a) 

while in the case (2.2b), 

(Ko[S) 2 = q32 (2.21b) 

Introducing also the formal assumptions (whose physical significance will 
be discussed later) 

gi = gi(P) (2.22a) 

d = d(P) (2.22b) 

N 3 =Na(P ) (2.22c) 

bl/(Nx b3) = ba (P)/(NI (P)b3(P)) (2.22d) 

then, once the values of the parameters associated with the proton have been 
fLxed, the b i and the magnetic moment ratios (2.18) for each of the other 
baryons will depend only on the choice of (2.2a) or (2.2b) and on the specific 
shell type assignments assumed. 

Assuming for the proton: the case (2.2a) (and thus (2.20a)), the identifica- 
tions 6v, p, n) for its shells (1,2,  3) and the parameter values 

d(P) = 1 (2.23a) 

b(P) = 1 (2.23b) 

g(P) = 2 (2.23c) 

a(P) = 15/2 (2.23d) 

and using (2.15), 

M(P)/m = (1/e 2 - 37/36)27/2 = 1836-1113 (2.23e) 

M(P) = 938.2604 MeV (2.23 0 

where 1/e 2 = 137.03602 and m = .5110041 MeV have been used. This value 
for the proton mass is in good agreement with the measured value, 938-2592 +- 
• 0052 MeV. The values of m, e 2 ,M(P) and the error in M(P) have been taken 
from Particle Data Group (1973). For subsequent reference, the values of 
Ko(P) and K(P) are given by 

Ko(P)/S = 1 (2.23g) 

(K(P)[S) ~ 1.000004 (2.23h) 

With (2.19) and (2.23a) the magnetic moment ratios (2.18) are given by 

l.t&(P) = Ko/Ko(P) = Ko/S (2.24) 



A NEW SEMtCLASSICAL ELEMENTARY PARTICLE MODEL 245  

Table 2 displays the values of the magnetic moment ratios obtained from 
(2.24). The choice of (2.2a) or (2.2b) (and thus of (2.20a) or (2.20b)) is 
indicated for each baryon by enclosing the pair of quarks corresponding to 
shells of equal radius in parentheses. The values obtained for the b i using 
(2.10) with the assumed proton parameters (2.23a-c) are also shown. 

The tabulated magnetic moment ratios are equivalent to well-known 
predictions of the non-relativistic quark model and are consistent with the 
SU(6) result p(N)/p(P) = - 2 / 3  and the SU(3) relations kt(2~ ÷) =p(P), p(X-) = 
~(2~-) and p(N) = ~(~o). These values for the magnetic moment ratios are 
only in approximate agreement with experiment, the result for the A being 
particularly inaccurate. 

Having assumed ]i = 1/2, the identifications gi = 2 for the quark g-factors 
are consistent with the assumption that quarks are simple Dirac particles, 
whose orbital angular momenta, for baryons, is zero. 

TABLE 2. The baryon magnetic moments in units of the proton moment from (2.24), 
and the b i obtained using (2.22c, d). Parentheses indicate which two quark symbols label 
the particle subshells having equal radii according to (2.2a, b) 

Quarks 
(1,2, 3) lu/u(P)I 1/b3 2 bulb1 

~+ p(p n) 1 1 1 
~-  (n n)X 1/3 9 5/2 
E- (XX)n 1/3 9 5/2 
N (n n)p 2/3 15/4 5/2 
~o CA X)p 2/3 15/4 5/2 
~o (pn)X 1/3 13 ~~/(7)/7 
A (p n)X 1/3 13 ~x/(7)/7 

The assumption that d --- 1 for all baryons corresponds to the effective 
elimination of this parameter and the assumption that the radius and the 
electromagnetic self-energy of all baryons are related in general by WR = 1. 
The assumption that also b3(P) = 1 corresponds according to (2.9a, d) to the 
assumption that the quark mass m 3 equals the electromagnetic self-energy of 
the proton, m 3 = W(P). 

From a physical point of view, the formal conditions (2.22c, d) would 
correspond to the assumption that the fraction of the total electromagnetic 
energy of a baryon due to its inner (and thus, also outer) shell (or shells, 
depending on (2.2a, b) is the same for all baryons, this interpretation relying 
on (2.22b) and on the assumption that m 1/m3 is constant. 

31 Generalisation to Particle Sequences 

In this section an attempt is made to elucidate the possible physical signifi- 
cance of the various parameters appearing in (2.t8) and (2.15) and, in particu- 
lar, the significance of the relation (2.t 2). 
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The basic relationships used in the following are two expressions for a 
particle (baryon) magnetic moment. Identifying the magnitude of a baryon 
moment expressed in terms of its spin, S, and g-factor, G, with the magnitude 
of the sum of the moments of its constituent quarks (from (2.16)) 

p = e(g3/2rn3)K = e(G/2M)S (3.1) 

From (3.1), defining 

3' = (G/g3)(S/K) (3.2a) 

M = m37 (3.2b) 

Hypothesising the existence of a particle of mass M* with a quark substructure 
similar to that of the particle of mass M (the relationships between these par- 
ticles wilt be made more precise in the following), and, distinguishing the pro- 
perties associated with this new particle from those associated with the particle 
of mass M by means of an appended asterisk, the magnetic moment of the new 
particle would satisfy 

p* = e(g~/2m~)K* = e(G*/2M*)S* (3.3) 

From (3.3), defining 

From (3.2) and (3.4) 

3'* = (G* /g'~)S* /K* (3.4a) 

M* = rn~7* (3.4b) 

M*/M = ('r*/'Y)m~/m3 (3.S) 

Further characterising the relationship between the particles of mass M* and 
M in terms of a parameter f defined by 

m 1 = f m ~  (3.6) 

and using (3.5), 

M * / M  = mt /m3(" /* / f7  ) (3.7) 

If the parameters e from (2.12) and f from (3.6) satisfy 

~f= ~,*I~ (3.sa) 
and ff 

M*/M = M / m  (3.8b) 

then (3.7) is identical with (2.13). From this point of view the right-hand side 
of (2.13) would correspond basically to an expression for the mass ratio 
M*[M; because of the conditions (3.8) it would also correspond to an expres- 
sion for M/rn. This idea was utilised in conjunction with the previous models, 
where it was further speculated that m, M and M* correspond to the masses 
of the first three particles in an (infinite) sequence of particles; specifically 
(3.8b) was generalised to 

Mn + 1/Mn = M2/M1 = M / m  (3.9) 
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where n would denote the position of a particle in the postulated sequence. 
The masses of the particles in the sequence would be Mn+ 1/M 1 = ( M / m )  n. 

In the following a convenient formalism for the description of such 
sequences of particles wilt be developed; the collocation of the relation (2.12) 
within this formalism is evidenced and, with reference to the model discussed 
in the previous section, a criterion by which the length of a particle sequence 
may be fixed is obtained and a specific particle sequence is examined in detail. 

Adjoining an additional subscript to the symbols which have previously 
denoted the properties associated with a particle, where this new subscript 
identifies the position of a particle in a presumed sequence of particles, the 
relations (3.2), (3.6) and (2.12) are respectively generalised to 

'Yn = ( an /g3 ,n)Sn/Kn (3.t Oa) 

kin = 3"n m a,n (3.10b) 

ml ,n  = fnm3,n+ l (3.11) 

M n + I / M  n = anml,n+l/rn3,n+1 (3.12) 

It is noteworthy that o~ n and f n  are not properties of a particle but relate 
successive particles in the sequence. Defining new parameters, On and ~/n, 
which respectively relate the three quark masses (ma ,n_  1 , rna, n,  ma,n+l) and 
the three particle masses (M n_  1, k i n ,  Mn +1) by 

ma,n+l /m3,n  = (m3 ,n /m3 ,n_ l )Pn  = m3,2/m3,  I l]~=2p/c (3.13) 

= I] n Tn+I/Tn = ("[n/"gn-1)~'ln 72/71 k=2r/k (3.14) 

and using also (3.10), (3.11) and (3.t2), 

7n+l/"[n = O~nfn+lPn (3.15) 

From (3.10), (3.13) and (3.14), 

M n + I / M  n = (Tn+l/Tn)m3,n+1[m3, n 

= M2/M1 I]~c=2 *?/~p/~ (3.16) 

and, defining 

X(/'/) = n k 1]/c=2 I'Ii=2 ~ i (3.17) 

and using (3.10) and (3.14), 

Mn+l/m3,n+ 1 = (M1/m3 ,1 ) (72 / ' y l )nX(n )  (3.18) 

In the following, only a particle sequence whose first two members are the 
electron and proton (M 1 = m, M2 = M(P))  will be considered. By generalising 
some of the results obtained for the proton in the previous section, a condition 
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limiting the length of the 'proton sequence' may be obtained from (3.18); in 
particular, using proton parameter values from (2.23) 

g3,n = 2 (3.19a) 

Kn/Sn ~ Ko,n/S n = 1 (3.19b) 

and, generalising (2.9a, d), 

From (3.10) and (3.19), 

WnR n = d = 1 (3.19c) 

m3,nR n = b3, n = 1 (3.19d) 

and, in particular, 

3' n -~ Gn/2 (3.20a) 

Wn = m3,n (3.20b) 

M1/W1 = M1/rn3,1 = 71 ~ G~/2 ~ 1 (3.20c) 

the mass of the electron would (almost) equal its electromagnetic self-energy. 
Using (3.20), (3.18) becomes 

Mn+l/Wn+ 1 = (M1/W1)("/2/'yi)nX(n) (3.21a) 

= ')' 1 (')'2/"/1 )nx(rl) (3.21 b) 

= (G2/2)nx(n)  (3.21 c) 

Obviously M n and Wn must obey the condition 

Mn/W n ~> 1 (3.22a) 

thus, from (3.21), if the sequence 71 n is such that 

MN/W N = ( G 2 / 2 ) N - 1 X ( N - 1 )  >__ 1 (3.22b) 

MN + 1/WN+ 1 = ( G 2 / 2 ~ X ( N )  < 1 (3.22c) 

then the proton sequence will terminate at its Nth  member. 
It may be observed that (3.16) would be equivalent to (3.9) if, for example, 

rlk = l /ok .  However in the following a different sequence, having relatively 
more interesting properties, will be considered. 

Hypothesising 

Tln= n - l / n  (3.23) 

and using (3.17), 

X(n)  = 1/n! (3.24) 

Using (3.24) and the measured value of the proton g-factor G2[2 = 2-8, 
M6[W 6 = 43/30, M v / W  7 = 241/360, and thus the proton sequence would 
containN=6 members. I f M 6 / W  6 had turned out to be very close to one, it 
would be possible to characterise the limit of the sequence M n by the precise 
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constraint MN/WN = 1, which would then lead to a prediction for G2; by 
considering also the Pn a precise constraint on the sequence limit may be 
formulated. 

Hypothesising that the Pn are independent of  n, all equal a constant p, using 
(3.16) and (3.23), 

Mn +1/A/In = (M2/M1)pn - t / n  (3.25a) 

Mn+I /M1 = (M2/M1)n pn (n-1)/2 /n[ (3.25b) 

and using also (3.21), (3.24) and (3.20) 

Wn+ I/W1 = (M2/M1)npn(n-W2/( G2/2 ) n (3.25c) 

From (3.25b, c) it may be observed that for 3M2/M 1 ~ p < 1, the sequences 
M n and Wn would have maxima for n > 2; i fp  were sufficiently small the 
maxima would occur for small n. This suggests the possibility of refining the 
condition limiting the length of the proton sequence as follows: the value of 
p is such that the sequence M n has a maximum 'at' the limit determined by the 
sequence 77n ; precisely the sequence limiting condition is 

M 7 = M 6 > M  s (3.26a) 

M 6 = M 7 > M s (3.26b) 

W7 >M6 > W6 (3.26c) 

that is, the condition (3.22a) is violated because M n stops increasing at M 6 
whereas the sequence Wn continues to increase to W 7 > M 6. From (3.26) 
and (3.25a), 

MT/M 6 = (Mz/Ma)pS /6 = t 

M2/M1 = 6p -s (3.27) 

thus p may be determined in terms of the proton-electron mass ratio. 
At this point the obvious identification for p is 

1/p = zr = 3 -14159 , . .  (3.28) 

since, in this case, 

M2/M 1 = 6~ s = 1836"1181 (3.29a) 

M2 = 938"2639 MeV (3.29b) 

The expression (3.29a) for the proton-electron mass ratio has been suggested 
previously by several authors (Lenz, 1951 ; Good, 1970; Wyler, 1971). 

The condition (3.22a) limiting the length of the proton sequence and the 
expression (3.13) defining p can also be given spatial or geometrical interpre- 
tations. Using (3.19c), (3.22a) may be expressed as MnR n ~ 1 ; the radii of 
the particles in the proton sequence must be greater than (or equal to) their 
reduced Compton wavelengths. Using (3.19b) and (3.28), (3.13) corresponds 
to zrR n = Rn_ l  Rn+l ; the cross-sectional area of the nth member of the 
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sequence equals the area of the rectangle formed from the radii of the (n-1) th  
and (n+l)th members. 

Returning finally to the initial objectives of this section, it may be noted 
that the parameters a n and fn  may be separately related to the r/n and Pn if  
it is assumed that 

rnl;n/ma, n = F(P) (3.30) 

where F(P) is a constant, independent of n. In this case the ml,  n will also be 
related by an expression identical with (3.13); using (3.11) and (3.13), 

fn+l/fn = 1/pn+l = rr (3.31) 

From (3.14), (3.15) and (3.31), an+l/a n = rln+lPn+l and 3' n+l/Tn = anfn. With 
(3.30), (3.14) becomes M n + 1/Mn = anF(P). In particular, using the value a 1 = 
15/2 suggested in the previous section, 3'2/71 = 15/2 f l  and M2/M 1 = 
15/2F(P). 

4. Summary 

The general conclusions suggested by the present model are qualitatively 
similar to those of the previous models. Two types of baryon substructure are 
implied, one being characterised by a large spatial extension (R 3=R) and a 
small associated quark mass (m 3 <M(P)), the other being characterised by a 
very small spatial extension (R 1 ~ R) and a very large associated quark mass 
(ma >> M(P)). 

The present parameterisation is simpler than those previously considered 
in that it considers only one pair of quark masses, rather then allowing a 
different pair for each particle; this approach leads to the possibility of 
determining the parameters associated with all baryons in terms of the para- 
meters associated with the proton. 

In Section 2, fairly accurate values for the ratios of the baryon magnetic 
moments to the proton moment are obtained, together with an accurate value 
for the proton mass. This proton mass value results from especially simple 
identifications for the proton parameters but the significance of the relation 
(2.12) leading to the expression (2.15) for the proton mass is obscure and the 
value 15/2 for the parameter oe(P) would seem to require explanation. 

In Section 3 a possible explanation of (2.12) in terms of a presumed 
particle sequence, Mn, whose first two members are the electron and proton 
was presented. This approach necessitated the generalisation of a(P) to the 
sequence O/n(0/1 = 0/(P))  and the introduction of also another parameter 
sequence fn .  The sequence Mn could also be characterised in terms of para- 
meter sequences Pn and r~ n whose dements could be fixed such as to obtain 
a finite length for the sequence M n and a second prediction (3.29) for the 
proton-electron mass ratio. The a n andfn could be related to the Pn and 
r~ n but essentially because the On and r/n relate properties associated with 
three successive members of the sequence whereas c~ n and fn  relate properties 
associated with two successive members, only the ratios fn +1 ~In and an +1/an 
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could be determined leaving the values o f f t  and oz 1 = a(P) theoretically 
undetermined 

The expressions (2.23e) and (3.29a) both yield estimates for the proton- 
electron mass ratio which agree within experimental error with the measured 
values for this quantity However, combining these expressions the fine 
structure constant may be predicted to obey 

1/e 2 = 4ns/9 + 37/36 = 137"03653 

The deviation of this result from the measured value 1/e 2 = 137.03602 + 
"00021 suggests that either (2.23e) or (3.29a) is slightly inaccurate (or both 
are). 
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